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NetworkX is a Python language package for explo-
ration and analysis of networks and network algo-
rithms. The core package provides data structures
for representing many types of networks, or graphs,
including simple graphs, directed graphs, and graphs
with parallel edges and self-loops. The nodes in Net-
workX graphs can be any (hashable) Python object
and edges can contain arbitrary data; this flexibil-
ity makes NetworkX ideal for representing networks
found in many different scientific fields.

In addition to the basic data structures many graph
algorithms are implemented for calculating network
properties and structure measures: shortest paths,
betweenness centrality, clustering, and degree dis-
tribution and many more. NetworkX can read and
write various graph formats for easy exchange with
existing data, and provides generators for many
classic graphs and popular graph models, such as
the Erdos-Renyi, Small World, and Barabasi-Albert
models.

The ease-of-use and flexibility of the Python pro-
gramming language together with connection to the
SciPy tools make NetworkX a powerful tool for sci-
entific computations. We discuss some of our recent
work studying synchronization of coupled oscillators
to demonstrate how NetworkX enables research in
the field of computational networks.

Introduction

Recent major advances in the theory of networks com-
bined with the ability to collect large-scale network
data has increased interest in exploring and analyz-
ing large networks [New03] [BNFT04]. Applications of
network analysis techniques are found in many scien-
tific and technological research areas such as gene ex-
pression and protein interaction networks, Web Graph
structure, Internet traffic analysis, social and collab-
orative networks including contact networks for the
spread of diseases. The rapid growth in network theory
has been fueled by its multidisciplinary impact; it pro-
vides an important tool in a systems approach to the
understanding of many complex systems, especially in
the biological sciences.

In these research areas and others, specialized software
tools are available that solve domain-specific problems
but there are few open-source general-purpose compu-
tational network tools [CN] [OFS08]. NetworkX was
developed in response to the need for a well-tested and
well-documented, open source network analysis tool
that can easily span research application domains. It
has effectively served as a platform to design theory

and algorithms, to rapidly test new hypotheses and
models, and to teach the theory of networks.

The structure of a network, or graph, is encoded in the
edges (connections, links, ties, arcs, bonds) between
nodes (vertices, sites, actors). NetworkX provides ba-
sic network data structures for the representation of
simple graphs, directed graphs, and graphs with self-
loops and parallel edges. It allows (almost) arbitrary
objects as nodes and can associate arbitrary objects to
edges. This is a powerful advantage; the network struc-
ture can be integrated with custom objects and data
structures, complementing any pre-existing code and
allowing network analysis in any application setting
without significant software development. Once a net-
work is represented as a NetworkX object, the network
structure can be analyzed using standard algorithms
for finding degree distributions (number of edges inci-
dent to each node), clustering coefficients (number of
triangles each node is part of), shortest paths, spectral
measures, and communities.

We began developing NetworkX in 2002 to analyze
data and intervention strategies for the epidemic
spread of disease [EGKO02] and to study the structure
and dynamics of social, biological, and infrastructure
networks. The initial development was driven by our
need for rapid development in a collaborative, mul-
tidisciplinary environment. Our initial goals were to
build an open-source tool base that could easily grow
in a multidisciplinary environment with users and de-
velopers that were not necessarily experts in program-
ming or software engineering. We wanted to interface
easily with existing code written in C, C++, and FOR-
TRAN, and to painlessly slurp in large nonstandard
data sets (one of our early tests involve studying dy-
namics on a 1.6 million node graph with roughly 10
million edges that were changing with time). Python
satisfied all of our requirements but there was no ex-
isting APT or graph implementation that was suitable
for our project. Inspired by a 1998 essay by Python
creator Guido van Rossum on a Python graph repre-
sentation [vR98] we developed NetworkX as a tool for
the field of computational networks. NetworkX had
a public premier at the 2004 SciPy annual conference
and was released as open source software in April 2005.

In this paper we describe NetworkX and demonstrate
how it has enabled our recent work studying synchro-
nization of coupled oscillators. In the following we give
a brief introduction to NetworkX with basic examples
that demonstrate some of the classes, data structures,
and algorithms. After that we describe in detail a re-
search project in which NetworkX plays a central role.
We conclude with examples of how others have used
NetworkX in research and education.
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Using NetworkX

To get started with NetworkX you will need the
Python language system and the NetworkX package.
Both are included in several standard operating system
packages [pac]. NetworkX is easy to install and we sug-
gest you visit the project website to make sure you have
the latest software version and documentation [HSS].
In some of the following examples we also show how
NetworkX interacts with other optional Python pack-
ages such as NumPy, SciPy, and Matplotlib, and we
suggest you also consider installing those; NetworkX
will automatically use them if they are available.
The basic Graph class is used to hold the network in-
formation. Nodes can be added as follows:

>>> import networkx

>>> G = networkx.Graph()

>>> G.add_node(1) # integer

>>> G.add_node(’a’) # string

>>> print G.nodes()

[’a’, 1]
Nodes can be any hashable object such as strings, num-
bers, files, or functions,

>>> import math

>>> G.add_node(math.cos) # cosine function
>>> fh = open(’tmp.txt’,’w’)

>>> G.add_node(fh) # file handle

>>> print G.nodes()

[<built-in function cos>,

<open file ’tmp.txt’, mode ’w’ at 0x30dc38>]

Edges, or links, between nodes are represented as tu-
ples of nodes. They can be added simply

>>> G.add_edge(1,’a’)

>>> G.add_edge(’b’ ,math.cos)

>>> print G.edges()

[(’b’, <built-in function cos>), (’a’, 1)]

When adding an edge, if the nodes do not already exist
they are automatically added to the graph.
Edge data d can be associated with the edge by adding
an edge as a 3-tuple (u,v,d). The default value for
d is the integer 1 but any valid Python object is al-
lowed. Using numbers as edge data allows a natural
way to express weighted networks. In the following ex-
ample we use Dijkstra’s algorithm to find the shortest
weighted path through a simple network of four edges
with weights.

>>> G = networkx.Graph()

>>> e = [(’a’,’b’,0.3),(’b?,’¢c?,0.9),

(’a’,7¢?,0.5),(’c’,?d’,1.2)]

>>> G.add_edges_from(e)

>>> print networkx.dijsktra_path(G,’a’,’d’)

[’a’, ’c’, ’d’]
NetworkX includes functions for computing network
statistics and metrics such as diameter, degree distri-
bution, number of connected components, clustering
coefficient, and betweenness centrality. In addition,
generators for many classic graphs and random graph
models are provided. These graphs are useful for mod-
eling and analysis of network data and also for testing
new algorithms or network metrics. The following ex-
ample shows how to generate and compute some statis-
tics for a network consisting of a path with 6 nodes:

>>> G = networkx.path_graph(6)

>>> print G.degree()

[1, 2, 2, 2, 2, 1]

>>> print networkx.density(G)

0.333333333333

>>> print networkx.diameter(G)

5

>>> print networkx.degree_histogram(G)

[0, 2, 4]

>>> print networkx.betweenness_centrality(G)
{0: 0.0, 1: 0.4, 2: 0.6, 3: 0.6, 4: 0.4, 5: 0.0}

NetworkX leverages existing Python libraries to ex-
tend the available functionality with interfaces to well-
tested numerical and statistical libraries written in C,
C++ and FORTRAN. NetworkX graphs can easily be
converted to NumPy matrices and SciPy sparse matri-
ces to leverage the linear algebra, statistics, and other
tools from those packages. For example, to study the
eigenvalue spectrum of the graph Laplacian the Net-
workX laplacian() function returns a NumPy matrix
representation. The eigenvalues can be then easily
computed using the numpy.linalg sub-package

>>> L = networkx.laplacian(G)
>>> print L # a NumPy matrix
[[1. -1. 0. 0. 0. 0.]
[-1. 2. -1. 0. 0. 0.]
-1. 2. -1. 0. 0.]
0. -1. 2. -1. 0.]
0. 0. -1. 2. -1.]
0. 0. 0.-1. 1.]
>>> import numpy.linalg
>>> print numpy.linalg.eigvals(L)
[ 3.7321e+00 3.0000e+00 2.0000e+00
1.0000e+00 -4.0235e-17 2.6795e-01]

[o.
[o.
[o.
[o.

]

For visualizing networks, NetworkX includes an inter-
face to Python’s Matplotlib plotting package along
with simple node positioning algorithms based on
force-directed, spectral, and geometric methods.

>>> G = networkx.circular_ladder_graph(12)
>>> networkx.draw(G)

Figure 1: Matplotlib plot of a 24 node circular ladder
graph

Connections to other graph drawing packages are
available either directly, for example using PyGraphviz
with the Graphviz drawing system, or by writing the
data to one of the standard file interchange formats.
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Inside NetworkX

NetworkX provides classes to represent directed and
undirected graphs, with optional weights and self
loops, and a special representation for multigraphs
which allows multiple edges between pairs of nodes.
Basic graph manipulations such as adding or removing
nodes or edges are provided as class methods. Some
standard graph reporting such as listing nodes or edges
or computing node degree are also provided as class
methods, but more complex statistics and algorithms
such as clustering, shortest paths, and visualization are
provided as package functions.

The standard data structures for representating graphs
are edge lists, adjacency matrices, and adjacency lists.
The choice of data structure affects both the storage
and computational time for graph algorithms [Sed02].
For large sparse networks, in which only a small frac-
tion of the possible edges are present, adjacency lists
are preferred since the storage requirement is the
smallest (proportional to m + n for n nodes and m
edges). Many real-world graphs and network models
are sparse so NetworkX uses adjacency lists.

Python built-in dictionaries provide a natural data
structure to search and update adjacency lists [vR9S|;
NetworkX uses a “dictionary of dictionaries” (“hash of
hashes”) as the basic graph data structure. Each node
n is a key in the G.adj dictionary with value consist-
ing of a dictionary with neighbors as keys to edge data
values with default 1. For example, the representation
of an undirected graph with edges A — B and B—C'is

>>> G = networkx.Graph()
>>> G.add_edge(’A’,’B?)
>>> G.add_edge(’B’,’C’)
>>> print G.adj

{’A: {°B’: 1},
'Bo: {°A°: 1, °C’: 1},
°Cc’: {’B’: 1}}

The outer node dictionary allows the natural expres-
sions n in G to test if the graph G contains node n
and for n in G to loop over all nodes [Epp08]. The
“dictionary of dictionary” data structure allows find-
ing and removing edges with two dictionary look-ups
instead of a dictionary look-up and a search when using
a “dictionary of lists”. The same fast look-up could be
achieved using sets of neighbors, but neighbor dictio-
naries allow arbitrary data to be attached to an edge;
the phrase G[u][v] returns the edge object associated
with the edge between nodes u and v. A common use is
to represent a weighted graph by storing a real number
value on the edge.

For undirected graphs both representations (e.g A— B
and B — A) are stored. Storing both representations
allows a single dictionary look-up to test if edge v — v
or v—u exists. For directed graphs only one of the rep-
resentations for the edge u — v needs to be stored but
we keep track of both the forward edge and the back-
ward edge in distinct “successor” and “predecessor”
dictionary of dictionaries. This extra storage simpli-
fies some algorithms, such as finding shortest paths,
when traversing backwards through a graph is useful.

The “dictionary of dictionaries” data structure can
also be used to store graphs with parallel edges (multi-
graphs) where the data for G[u][v] consists of a list of
edge objects with one element for each edge connecting
nodes v and v. NetworkX provides the MultiGraph
and MultiDiGraph classes to implement a graph
structure with parallel edges.

There are no custom node objects or edge objects by
default in NetworkX. Edges are represented as a two-
tuple or three-tuple of nodes (u,v), or (u,v,d) with d
as edge data. The edge data d is the value of a dictio-
nary and can thus be any Python object. Nodes are
keys in a dictionary and therefore have the same re-
strictions as Python dictionaries: nodes must be hash-
able objects. Users can define custom node objects as
long as they meet that single requirement. Users can
define arbitrary custom edge objects.

NetworkX in action: synchronization

We are using NetworkX in our scientific research for
the spectral analysis of network dynamics and to
study synchronization in networks of coupled oscilla-
tors [HS08]. Synchronization of oscillators is a fun-
damental problem of dynamical systems with applica-
tions to heart and muscle tissue, ecosystem dynam-
ics, secure communication with chaos, neural coordi-
nation, memory and epilepsy. The specific question
we are investigating is how to best rewire a network
in order to enhance or decrease the network’s ability
to synchronize. We are particularly interested in the
setting where the number of edges in a network stays
the same while modifying the network by moving edges
(defined as removing an edge between one pair of nodes
and adding an edge between another). What are the
network properties that seriously diminish or enhance
synchronization and how hard is it to calculate the
required rewirings?

Our model follows the framework presented by [FJC00]
where identical oscillators are coupled in a fairly gen-
eral manner and said to be synchronized if their states
are identical at all times. Small perturbations from
synchronization are examined to determine if they
grow or decay. If the perturbations decay the system
is said to be synchronizable. In solving for the growth
rate of perturbations, it becomes apparent that the dy-
namical characteristics of the oscillator and coupling
separate from the structural properties of the network
over which they are coupled. This surprising and pow-
erful separation implies that coupled oscillators syn-
chronize more effectively on certain networks indepen-
dent of the type of oscillator or form of coupling.

The effect of the network structure on synchroniza-
tion is determined via the eigenvalues of the network
Laplacian matrix L = D — A where A is the adjacency
matrix representation of the network and D is a diag-
onal matrix of node degrees. For a network with IV
oscillators, there are N eigenvalues which are all real
and non-negative. The lowest \g = 0 is always zero
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and we index the others A; in increasing order. For
a connected network it is true that \; > 0 for i > 0.
The growth rate of perturbations is determined by a
Master Stability Function (MSF) which takes eigen-
values as inputs and returns the growth rate for that
eigenmode. The observed growth rate of the system is
the maximum of the MSF evaluations for all eigenval-
ues. The separation comes about because the MSF is
determined by the oscillator and coupling but not by
the network structure which only impacts the inputs to
the MSF. So long as all eigenvalues lie in an interval
where the MSF is negative, the network is synchro-
nizable. Since most oscillator/couplings lead to MSFs
where a single interval yields negative growth rates,
networks for which the eigenvalues lie in a wide band
are resistant to synchronization. An effective measure
of the resistance to synchronization is the ratio of the
largest to smallest positive eigenvalue of the network,
r = An—1/A1. The goal of enhancing synchronization
is then to move edges that optimally decrease r.

le—e high-to-low
=—= degree
e—e eigenvedor

Barabasi — Albert

250

r 150

50f

900} Power-law corfiguration model 1

700}
500} ]
300}
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Figure 2: The change in resistance to synchrony r

as edges are moved in four example random net-

work models. An algorithm using Laplacian eigen-

vectors compares favorably to those using node de-

gree. Eigenvectors are found via NetworkX calls to
SciPy and NumPy matrix eigenvalue solvers.

Python makes it easy to implement such algorithms
quickly and test how well they work. Functions that
take NetworkX.Graph() objects as input and return
an edge constitute an algorithm for edge addition or
removal. Combining these gives algorithms for mov-
ing edges. We implemented several algorithms using
either the degree of each node or the eigenvectors of
the network Laplacian and compared their effective-
ness to each other and to random edge choice. We

found that while algorithms which use degree infor-
mation are much better than random edge choice, it is
most effective to use information from the eigenvectors
of the network rather than degree.

Of course, the specific edge to choose for rewiring de-
pends on the network you start with. NetworkX is
helpful for exploring edge choices over many different
networks since a variety of networks can be easily cre-
ated. Real data sets that provide network configura-
tions can be read into Python using simple edge lists as
well as many other formats. In addition, a large collec-
tion of network model generators are included so that,
for example, random networks with a given degree dis-
tribution can be easily constructed. These generator
algorithms are taken from the literature on random
network models. The Numpy package makes it easy
to collect statistics over many networks and plot the
results via Matplotlib as shown in Fig. 2.

In addition to computation, visualization of the net-
works is helpful. NetworkX provide hooks into Mat-
plotlib or Graphviz (2D) and VTK or UbiGraph (3D)
and thereby allow network visualization with node and
edge traits that correlate well with r as shown in Fig.
3.

Figure 3: A sample graph showing eigenvector ele-
ments associated with each node as their size. The
dashed edge shows the largest difference between two
nodes. Moving the edge between nodes 3 and 8 is
more effective at enhancing synchronization than the
edge between the highest degree nodes 3 and 6.

NetworkX in the world

The core of NetworkX is written completely in Python;
this makes the code easy to read, write, and document.
Using Python lowers the barrier for students and non-
experts to learn, use, and develop network algorithms.
The low barrier has encouraged contributions from the
open-source community and in university educational

http://conference.scipy.org/proceedings/SciPy2008/paper_2
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settings [MS07]. The SAGE open source mathemat-
ics system [Ste08] has incorporated NetworkX and ex-
tended it with even more graph-theoretical algorithms
and functions.

NetworkX takes advantage of many existing applica-
tions in Python and other languages and brings then
together to build a powerful analysis platform. For the
computational analysis of networks using techniques
from algebraic graph theory, NetworkX uses adja-
cency matrix representations of networks with NumPy
dense matrices and SciPy sparse matrices [Oli06]. The
NumPy and SciPy packages also provide linear sys-
tem and eigenvalue solvers, statistical tools, and many
other useful functions. For visualizing and drawing,
NetworkX contains interfaces to the Graphviz network
layout tools [EGKO04], Matplotlib (2d) [Hun07] and
UbiGraph (3d) [Vel07]. A variety of standard net-
work Models are included for realization and creation
of network models and NetworkX can import graph
data from many external formats.

Conclusion

Python provides many tools to ease exploration of sci-
entific problems. One of its strengths is the ability to
connect existing code and libraries in a natural way
that eases integration of many tools. Here we have
shown how NetworkX, in conjunction with the Python
packages SciPy, NumPy, Matplotlib and connection to
other tools written in FORTRAN and C, provides a
powerful tool for computational network analysis. We
hope to have enticed you to take a look at NetworkX
the next time you need a way to keep track of connec-
tions between objects.
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